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Interactions between species
Until now only monocultures have been considered, although, most often 
populations of different plant species will form plant communities. The 
individual plants in a natural plant community will typically compete 
with conspecifi c plants (intraspecifi c competition) and with plants be-
longing to other species (interspecifi c competition) for the limiting re-
sources (Harper 1977, Goldberg and Barton 1992, Gurevitch et al. 1992). 
 It is believed that interspecifi c competition plays an important role in the 
composition of plant communities, and this has indeed been demonstrated 
(e.g., Weiher et al. 1998, Silvertown et al. 1999, Gotelli and McCabe 2002). 
Thus, to understand and possibly to predict the formation of plant communi-
ties, the interspecifi c competitive forces between different plant species have 
been investigated, often by performing two-species competition experiments 
(e.g., de Wit 1960, Marshall and Jain 1969, Antonovics and Fowler 1985, Law 
and Watkinson 1987, Pacala and Silander 1987, Francis and Pyke 1996). 

 Different plant species have different strategies to obtain their neces-
sary share of the resources in order to grow and reproduce (Grime 2001). 
Some plant species are of the same functional type, i.e., they compete 
for the same resources. Other plant species do not compete for the same 
resources and may have no effect on each other. In some cases the inter-
action of two species is benefi cial for one of the species but has no effect 
on the other. For example, the early emerging small geophyte Anemone
nemorosa depends on a dense tree cover of e.g. Fagus sylvatica during the 
summer in order not to be outcompeted by e.g. grasses. In total, two 
plant species may interact in six qualitatively different ways (Table 4.1).

Interaction Species Nature of interaction

A B

Competition - - Each species has a negative effect on each other

Parasitism + - Species A exploits species B

Mutualism + + Interaction is favourable to both species

Commensalism + 0 Species A benefi ts whereas species B is unaffected

Amensalism - 0 Species A is inhibited whereas species B is unaffected

Neutralism 0 0 Neither species affect each other

Table 4.1 Different types of interactions  between two plant species (after Haskell 1947).
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be investigated by two different approaches: manipulated competition 
experiments  or by censusing  coexisting plant populations in a natural 
plant community. Manipulated plant competition experiments are con-
ducted by measuring size, fecundity, the number of successful descend-
ants, or other measures of ecological success  at variable densities and 
proportions of two or more plant species. There has been an argument 
in the ecological literature, whether a substitution design  (varying spe-
cies proportions while keeping combined density fi xed) or an additive 
design  (increasing the density of one species while keeping the density 
of the other species fi xed) was the best design of a plant competition 
experiment. This argument is a leftover from the time when plant com-
petition experiments mainly were used to address applied issues in the 
agricultural sciences. There is no doubt that both types of plant compe-
tition designs are equally inferior when plant ecological questions are 
investigated (e.g. Cousens 1991, Inouye 2001). In the words of Inouye 
(2001): “The use of substitution and additive designs has largely pre-
cluded generating quantitative estimates of the effects of interspecifi c 
competition on population dynamics or coexistence, beyond the infer-
ence that species do or do not compete.” Instead it is recommendable 
to vary both density and proportion of each species (response surface 
design ) in order to cover a realistic domain of densities and proportions 
of a natural plant community (Inouye 2001). Hence, the minimum re-
quirement of a two-species competition experiment is three proportions 
(e.g. 1:0, 1:1, 0:1) at three densities (Fig. 4.1). 

Fig. 4.1 A two-species competition experiment  at three proportions (e.g. 1:0, 1:1, 0:

1) and at three densities.
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munity (e.g. Rees et al. 1996, Freckleton and Watkinson 2001) has the ad-
vantage that it is the actual ecological processes which are studied, where 
manipulated competition experiments  often may be criticised for unreal-
istic growing conditions. The drawbacks of the censusing methodology is 
that it is often time consuming and work intensive, and that the domain 
of the data (densities and proportions of the non-manipulated coexisting 
species) may be inadequate to make useful ecological predictions. 

Modelling interspecifi c competition 
The qualitative descriptive terminology of interaction types in Table 
4.1 has become standard, and is readily generalised by the well-known 
Lotka-Volterra quantitative model  of species interaction based on com-
petition coeffi cients (e.g. Christiansen and Fenchel 1977). The concept of 
competition coeffi cients  may, at least in principle, be developed from the 
causal factors: time, habitat and resources of the multidimensional niche 
concept (MacArthur and Levins 1967, Christiansen and Fenchel 1977). 
However, usually competition coeffi cients are thought of as parameters 
in an empirical competition model, which are estimated using standard 
statistical methodology (e.g. Marshall and Jain 1969, Harper 1977, Fir-
bank and Watkinson 1985, Law and Watkinson 1987, Pacala and Silan-
der 1990, Francis and Pyke 1996, Rees et al. 1996, Damgaard 1998). This 
statistical approach has been criticised (Harper 1977, Tilman 1988) for 
contributing little to the understanding of the underlying mechanisms 
behind the phenomenon of competition and consequently provide only 
limited predictive power. In some cases the estimation of competition 
coeffi cients may even be directly deceptive of the underlying causes of 
the interaction, e.g., apparent competition  (Holt 1977), when a herbivore 
tends to eat the most common of two plant species. 
 As discussed previously, two fundamentally different (or comple-
mentary) modelling approaches may be taken in the description of the 
interactions between plant species: The mechanistic – and the empiri-
cal modelling approach. While the mechanistic modelling approach , at 
least in principle, would respond to the just criticism raised by Harper 
(1977), Tilman (1988) and others, the complexity and stochasticity of the 
causal relationships underlying the species interaction in a natural plant 
community are daunting. The dynamics of plant communities are so 
complex that only simple heuristic mechanistic modelling is realistic at 
present. If we want to make use of the available exciting plant ecological 
data on interspecifi c competition in a quantitative way, we are forced to 
make use of relatively simple empirical competition models .
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using a set of competition indices introduced by de Wit (1960). Unfortu-
nately, the notion of population changes is not easily incorporated into 
the de Wit competition model  (Inouye and Schaffer 1981) and the model 
is not readily comparable with the classical Lotka-Volterra competition 
model. Furthermore, the indices in the de Wit competition model lead 
to statistical diffi culties (Connolly 1986, Skovgaard 1986). Instead, it is 
advantageous to use a generalised single species competition model, 
where the effect of the individuals of other species is weighted by com-
petition coeffi cients. In principle all the models in chapter 2 and 3 might 
be generalised to multiple species using competition coeffi cients, but 
here we will mainly discuss the relatively simple class of mean-fi eld 
models  of two competing species. An often used and fl exible mean-fi eld 
two-species competition model is a generalisation of the hyperbolic   
size-density response function (2.12) (e.g. Firbank and Watkinson 1985, 
Law and Watkinson 1987, Damgaard 1998). 

   
 (4.1),

where xi are the densities  of plant species i, cij are the competition co-
effi cients and the other shape parameters are defi ned as in the single-
species case (2.12). The competition coeffi cient  cij can, analogous to the 
Lotka-Volterra competition model , be interpreted as the inhibition of 
species j on species i in units of the inhibition of species i on its own 
growth. For example, when cij = 0, species j has no effect on the growth 
of species i; when cij = 1, a plant of species j has the same effect on the 
growth of species i as a plant of species i; and when cij = 2, one plant of 
species j has the same effect on the growth of species i as two plants of 
genotype i. If cij < 0, species j has a positive effect on the growth of spe-
cies i.
 The empirical competition model (4.1) is quite fl exible and in many 
cases the model will be over-parameterised, see the discussion in the 
single-species case leading to model (2.13). Such a possible over-param-
eterisation generally decreases the testing power of the model, and it is 
therefore a standard statistical procedure to test, in this case by a loglike-
lihood ratio test (Appendix B), whether the model may be reduced by 
setting e.g. θ1 = θ2 = 1 and φ1 = φ2 = 1.

v1(x1, x2) = 1 + 1(x1 + c12 x2)φ1 1-1/θ

v2(x1, x2) = 2 + 2(c21x2 + x2)φ2 2-1/θ

α β

α β
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Example 4.1 Competition between two genotypes of 
Arabidopsis thaliana I

Arabidopsis thaliana is an almost completely self-fertilising  winter an-

nual (Abbott and Gomes 1989). The selfi ng breeding systems means 

that there is limited genetic exchange between A. thaliana genotypes 

on an ecological time scale (Miyashita et al. 1999) and that the eco-

logical success  or fi tness  of different A. thaliana genotypes may be de-

scribed by a plant species competition model (Ellison et al. 1994). That 

is, when there is no sexual transmission between individual plants, the 

ecological success of different genotypes may be modelled as if the 

genotypes where separate species.

 In a manipulated competition experiment  two A. thaliana geno-

types (Nd-1 and C24) were grown in an experimental garden in a 

design similar to Fig. 4.1, i.e., three proportions (1:0, 1:1, 0:1) at three 

densities (0.025 cm-2, 0.101 cm-2, 0.203 cm-2), and the dry weights were 

measured after seed setting. 

 The dry weight data was fi tted to competition model (4.1) and af-

ter the model was reduced (θ1 = θ2 = φ1 = φ2 = 1, loglikelihood ratio test 

with four degrees of freedom, P = 0.36), the posterior distribution of 

the competition coeffi cients were calculated assuming an uninforma-

tive prior (Fig. 4.2). Based on the 95% credibility intervals (Appendix C) 

genotype Nd-1 has a signifi cantly higher negative effect on C24 than

vice versa.

Fig. 4.2 The posterior density distribution of competition coeffi cients of two 

Arabidopsis thaliana genotypes (1: C24 and 2: Nd-1). The 95 % credibility inter-

vals for c12 is {0.30 – 0.75} and for c21 is {0.80 – 1.52}.
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equations  of the densities  of competing synchronous monocarpic plant 
populations may be formulated. However, in order to simplify the calcu-
lations it will in the following be assumed that the probability of germina-
tion, establishment and reaching reproductive age  is independent of the 
seed densities of the competing species and constant, i.e. pi(xi,0, xj,0) = pi,
and the recursive equations will be:

 (4.2),

where the hyperbolic  terms are measures of the average fecundity  
per plant (Hassell and Comins 1976, Firbank and Watkinson 1985, 
Damgaard 1998). The parameters in competition model (4.1) may be 
estimated from competition experiments and the population growth  
of the two species may be predicted using (4.2). To account for the pos-
sible effect of density-dependent mortality and if density-independent 
mortality may be assumed to occur before any density-dependent mor-
tality (see Chapter 3), then plant densities should be censused before 
the onset of density-dependent mortality. The plants that die due to 
density-dependent mortality before they are able to reproduce will then 
be recorded as having a fecundity of zero. 
 Analogous to the single-species case, knowledge on the equilibrium 
densities  may provide valuable information in predicting the future 
states of the plant community. The recursive equations (4.2) may be 
solved, x̂i = xi(g + 1) = xi(g), with the equilibria (Damgaard 1998):

(4.3a),
     

(4.3b),

     
(4.3c),

   
(4.3d),

where ui = (β i-1(pi
θ i – α i))

1/φ i.

x1(g+1) = p1 x1(g) 1 + 1(x1(g) + c12 x2(g))φ1 1-1/θα β

x2(g+1) = p2 x2(g) 2 + 2(c21x1(g) + x2(g))φ2 2-1/θα β

x1 = 0;^ x2 = 0^

x1 = u1;
^ x2 = 0^

x1 = 0;^ x2 = u2
^

x2 =x1 = ;^ ^
u1 – c21u2

1 – c12c21

u2 – c12u1

1 – c12c21
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erated to either equilibrium (4.3b) or equilibrium (4.3c); equilibrium 
(4.3d) was solved for cij after setting x̂1 = x̂2 = 0 (c12c21 ≠ 1) and the follow-
ing roots were obtained:

(4.4).

The Jacobian matrix (see Appendix D) of recursive equation (4.2) at the 
nontrivial equilibrium (4.3d) has two complicated eigenvalues {λ1, λ2}.
The inequalities λ1 < 1 and λ2 < 1 can be solved and both has the solu-
tion:

(4.5).

The solutions to the inequalities λ 1 > -1 and λ 2 > -1 are more complicat-
ed and a numerical investigation of the eigenvalues is necessary to de-
termine the stability of a specifi c equilibrium. Generally, if the curves of 
the cumulative plant sizes are not to concave (see Fig. 2.6), then the two 
species will coexist at equilibrium at the equilibrium densities (4.3d) if 
both species are able to persist when alone (see stability conditions for 
equilibrium (3.10)) and inequalities (4.5) are fulfi lled. In the important 
case, when φ i = θ i = 1 and c12 > 0, c21 < 1/c12, it can be showed that if 
both λ 1 < 1 and λ 2 < 1 then λ 1 > -1 and λ 2 > -1 (Damgaard 2004a). When 
the curves of the cumulative plant sizes becomes suffi ciently concave 
then the nontrivial equilibrium (4.3d) becomes a saddle point and the 
trajectory of the densities of the two species bifurcates into periodic 
coexisting densities. For even more concave curves of the cumulative 
plant sizes the dynamics become chaotic and the two species coexist at 
densities in the form of a strange attractor (Damgaard 2004a).
 Analogous to the continuous Lotka-Volterra competition model, 
there are four different ecological scenarios when two species compete: 
coexistence , species 1 will outcompete  species 2, species 2 will outcom-
pete species 1, and either species may outcompete the other depending 
on the initial conditions . In the last case of indeterminate competition 
the rarer of the two species will generally be outcompeted (but see Hof-
bauer et al. 2004). These four ecological scenarios  may be characterised 
by a set of inequalities of the competition coeffi cients similar to (4.5) 
(Table 4.2). 

c12 = u1/u2 ; c21 = u2/u1

( (

c12 < c12;

( c21 < c21

(
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 In some applied ecological questions, e.g., risk assessment of geneti-
cally modifi ed plants (Damgaard 2002) and the management of natural 
habitats, it is desirable to be able to predict which of the four different 
ecological scenarios is most likely. If the competition model (4.2) is repa-
rameterised so that c̆ij = cij + δij, then the signs of δij will discriminate 
between the four ecological scenarios (Fig. 4.3). The four different eco-
logical scenarios may be considered as four complementary hypotheses 
and the Bayesian posterior probabilities of each hypothesis may be 
calculated from a manipulated competition experiment, a known and 
density-independent probability of reaching reproductive age, and a 
prior distribution of the four hypotheses (Damgaard 1998).

Fig 4.3 The joint posterior distribution of the two competition coeffi cients (cij = c̆ij + δ δ ij) calculated from 

a hypothetical two-species competition experiment and the recursive equations (4.2) (Damgaard 1998). 

The volume under the “posterior surface” in the quadrate δ δ 12 < 0 and δ δ 21 < 0 is equal to the probability

that the two species will coexist at equilibrium. Likewise, the volumes in the quadrate δ δ 12 < 0 and 

δ δ 21 > 0, or δ δ 12 > 0 and δ δ 21 < 0, is equal to the probability that either species one, or two, respectively, 

will outcompete the other species, and the volume in the quadrate δ δ 12 > 0 and δ δ 21 > 0 is equal to 

the probability that either species will outcompete the other species.

21δ

12
δ

Table 4.2 The four different ecological scenarios when two species compete (Dam-

gaard 1998). 

Ecological scenario Condition Equilibrium

Coexistence 4.3d

Species 1 will win 4.3b

Species 2 will win 4.3c

Either species 1 or species 2 will win 4.3b or 4.3c

c12 < c12; c21 < c21

) )

c12 < c12; c21 > c21

) )

c12 > c12; c21 < c21

) )
c12 > c12; c21 > c21

) )
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 In the single-species case, it was discussed that the probability of 
germination, establishment and reaching reproductive age  in a natural 
habitat is a critical and variable factor in predicting population growth 
and equilibrium densities (Crawley et al. 1993, Stokes et al. 2004). How-
ever, as suggested in Table 4.3, the predicted probabilities of the four dif-
ferent ecological scenarios  when two species compete against each other 
are less sensitive to variation in the absolute value of the establishment 
probabilities. It is the relative differences between the establishment 
probabilities, the fecundities and the competitive abilities of the two 

Example 4.2 Competition between two genotypes of 
Arabidopsis thaliana II

Assume that the two genotypes of Arabidopsis thaliana (Nd-1 and C24)

investigated in example 4.1 are the two only genotypes in the A. thal-

iana population and that the density of A. thaliana is not controlled by 

other species. Similar to example 3.1, assume that mortality is high and 

density-independent, and furthermore that both genotypes have the 

same probability of reaching reproductive age. 

 The fecundity was estimated from the dry weight data by linear regres-

sions. The two genotypes differed signifi cantly in the way they converted 

biomass at the end of the growing season into fecundity; genotype C24

produced relatively more seeds per biomass (Damgaard and Jensen 2002). 

The Bayesian posterior probabilities of each ecological scenario was calcu-

lated assuming that the different ecological scenarios were equally prob-

able (uninformative prior distribution) (Table 4.3). Depending on the prob-

ability of germination, establishment and reaching reproductive age either 

“coexistence of the two genotypes” or “genotype C24 would outcompete 

Nd-1” was the predicted most likely long-term ecological scenario.

Ecological scenario p1=p2=0.005 p1=p2=0.001 p1=p2=0.0005

Coexistence 0.34 0.57 0.71

Genotype Nd-1 will win 0 0.001 0.003

Genotype C24 will win 0.66 0.43 0.28

Either genotype will win 0 0 0.001

Table 4.3 Predicted  probabilities of the four different ecological scenarios 

when two genotypes of Arabidopsis thaliana (Nd-1 and C24) compete against 

each other at different probabilities of germination, establishment, and reach-

ing reproductive age.
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Example 4.3 Competition between Avena fatua and
Avena barbata 

Assume that the densities of Avena fatua and Avena barbata are 

controlled by each other through competitive interactions and not 

by other species, and furthermore that the probabilities of reaching 

reproductive age are density-independent and known. 

 The fecundities of the two Avena species were estimated in a com-

petition experiment of fi ve proportions at six densities (Marshall and 

Jain 1969). The Bayesian posterior probabilities of each ecological sce-

nario were calculated assuming that each of the ecological scenarios was 

equally likely to occur (uninformative prior distribution) (Table 4.4).

The species distribution of Avena fatua and Avena barbata was ob-

served in a number of natural plant communities in two regions in 

California (Marshall and Jain 1969). Interestingly, the predicted proba-

bilities correspond with the observed distribution of the two plant spe-

cies in the Mediterranean warm summer region, whereas the observed 

competitive interactions do not explain the observed plant distribution 

in the Mediterranean cool summer region (Fig. 4.4). 

Fig. 4.4 The species distribution of Avena fatua and Avena barbata in two 

regions in California. Figure after Marshall and Jain (1969).

Ecological scenario p1 = p2 = 0.25

Coexistence 0.186

A. fatua will win 0.671

A barbata will win 0.001

Either species will win 0.142

Table 4.4 Predicted prob-

abilities of the four different 

ecological scenarios when 

Avena fatua and Avena bar-

bata compete against each 

other (Damgaard 1998).
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(Damgaard 1998). Consequently, the predictions based on the com-
petitive interactions between two species may therefore be less variable 
from year to year than estimating the population growth of each species 
separately.
 Similar to the single-species case the predicted equilibrium state of 
the plant community is independent of the age structures in the seed 
bank. At equilibrium, the age structures in the seed bank will also be at 
equilibrium and a fi xed number of seeds will germinate from each age-
class and species in the seed bank each year (Damgaard 1998).
 Ecological predictions  will always have to be taken with some scepti-
cism; it is an open question how well the predicted probabilities of the 
different ecological scenarios obtained from a short-term competition 
experiment will refl ect actual long-term ecological processes in a natural 
plant community (Kareiva et al. 1996). The realism will to a large extent 
be determined by the design of the competition experiment , since the 
predicted probability will never be better than the competition experi-
ment. If a key factor determining the competitive output between two 
plant species is not included in the experiment, then the predicted prob-
abilities will most likely be erratic and misleading. 
 Manipulated experiments necessarily reduce the ecological complex-
ity, and extrapolation from such experiments to long-term ecological sce-
narios can only be made with uncertainty. The predicted probabilities of 
the different ecological scenarios depend critically on a number of abiotic 
and biotic factors that for practical reasons often are kept fi xed in manipu-
lated experiments. The competitive ability may vary with the physical 
environment, e.g., temperature, nutrition and water availability (Clauss 
and Aarssen 1994). Species may also perform differently in competition 
with other plant species (Abrams 1996, Rees et al. 1996). Nevertheless, 
when confronted with a complex system, it is common scientifi c method-
ology to reduce the complexity of the system by ignoring some processes, 
to obtain manageable information, which is expected to be relevant in 
understanding the full system. Furthermore, quantitative ecological pre-
dictions are in demand in applied ecology, e.g., risk assessment of geneti-
cally modifi ed plants and the management of natural habitats, and more 
generally to advance the scientifi c fi eld of plant ecology (Keddy 1990, 
Cousens 2001).
 In the above discussion of the equilibrium states of two compet-
ing plant species, it is implicitly assumed that the environment where 
the plant species are competing is approximately constant or slowly 
changing on an ecological time scale. However, in some ecosystems, 
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effect on the environment; in the algae case the amount of abiotic es-
sential resources is altered. In such ecological systems more complicated 
dynamics, analogous to a predator-prey system of interaction, may be a 
more relevant description of the system (Huisman and Weissing 2001). 

Modelling spatial effects 
Often plant species are non-randomly distributed among each other 
(Dieckmann et al. 2000). The non-randomness may be due to historic 
establishment events of a primarily stochastic nature or as an effect of 
competitive interactions in previous generations, and the spatial proc-
esses of plants have theoretically been shown to affect the structuring 
of plant communities  (Bolker and Pacala 1999). There has been a recent 
trend within the scientifi c community to explain various general eco-
logical phenomenons by spatial effects and new hypotheses on the role of 
space in ecological processes have been developed (Tilman and Kareiva 
1997, Dieckmann et al. 2000). Unfortunately, the theoretical investigation 
of the often-complicated spatial effects shows a history of being prone 
to erroneous interpretations (Pacala and Levin 1997). For example, in an 
often-cited paper Tilman (1994) showed that an arbitrarily large number 
of competing species can coexist in a spatially structured habitat, but later 
this effect has been shown to be due to an overly simplifi ed competition 
model rather than to spatial structure (Adler and Mosquera 2000). 
 It is possible to generalise the empirical models developed for the 
single-species case using competition coeffi cients and test different 
ecological hypotheses with plant ecological data. However, only a few 
empirical studies have actually used such models to explain the effect of 
space on interspecifi c competition (Pacala and Silander 1990, Coomes et 
al. 2002) and these studies have not demonstrated a signifi cant effect of 
space on interspecifi c competition between two pairs of annual species. 
 The importance of spatial effects in interspecifi c competition and the 
structuring of plant communities have until now mainly been examined 
by heuristic models. Analogous to the single-species case (equations 3.16 
and 3.17), the spatial covariance  of two species (C11(r), C22(r), and C12(r))
as a function of the distance, r, at which it is measured, and the average 
spatial covariance  
   

(4.6),

(Bolker and Pacala 1999, Bolker et al. 2000), may be defi ned in the two-
species case. Comparable to the single-species case, a set of differential 

C
−

ij = ∫(Uij ∗ Di)(r)Cij (r) dr
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ances in a spatial explicit model of plants with a simplifi ed life history 
may be formulated and the invasion  criteria of an invading species may 
be calculated. In this way the invasion criteria of different spatial plant 
strategies have been investigated (Bolker and Pacala 1999).
 In the discrete hyperbolic competition model  (equation 4.1) the 
plants are implicitly assumed to be randomly dispersed, however, the 
notion of the average spatial covariance may be integrated into the com-
petition model (Bolker and Pacala 1999, Damgaard 2004b):

(4.7),

where xi + C−ii/xi is the average density of species i in the vicinity of spe-
cies i, and xi + C−ii/xi is the average density of species i in the vicinity of 
species j (Bolker and Pacala 1999). Assuming that the average spatial co-
variance at equilibrium is known, it is possible to calculate the predicted 
probabilities of the different ecological scenarios  as explained previously. 
 A special issue of spatial covariance  is that many manipulated plant 
competition experiments  for practical purposes often are arranged in a 
non-random spatial design, i.e. a grid design, a row design, or a honey-
comb design. Non-random spatial designs have consequences for the 
analysis of competition experiments that need to be clarifi ed in order to 
interpret the results (Mead 1967, Fortin and Gurevitch 2001, Stoll and 
Prati 2001, Damgaard 2004b). A regular spatial design in manipulated 
competition experiments decreases the variation in size and weight 
among conspecifi c plants since the species composition and density of 
the neighbourhood in most designs are held constant and less variable 
than in a random spatial design. Such a decrease in variation increases 
the likelihood of detecting a difference in the competitive ability of dif-
ferent plant species, which in many cases may be a motivating factor 
for choosing a non-random design. It could be argued that a reduction 
in experimental variation  in many cases would be benefi cial since the 
objective of many experiments is to detect mean differences rather than 
describing the variation. However, for a deeper understanding of the 
competitive forces and in order to predict different ecological scenarios, 
it is necessary to estimate different parameters of interests in a competi-
tion model. The problem with using a non-random design is that the 
data from plant competition experiments usually are analysed in mean-
fi eld competition models, which implicitly assume that plants interact 

v1(x1,x2) = 1 + 1 (x1 + C
−

11/x1 + c12(x2 + C
−

12/x2))φ -1/
1 1θβα

v2(x1,x2) = 2 + 2 (c21(x1 + C
−

12/x1) + x2 + C
−

22/x2)φ -1/
2 2θβα
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Example 4.4 Competition between two genotypes of Arabidopsis

thaliana III

The two genotypes of Arabidopsis thaliana (Nd-1 and C24) investigated 

in examples 4.1 and 4.2 were grown in a lattice grid design and in the 

mixed treatment the genotypes were arranged in a chessboard pattern. 

The spatial covariance  can be calculated from such a regular spatial pat-

tern by using the probability of site occupancy for each plant species and 

the conditional probabilities of two plants being the same plant species 

and different plants species (Damgaard 2004b).

 There is no dispersal in the competition experiment and the average 

spatial covariance may be calculated with respect to a known competition 

kernel (equation 4.6). However, since there is no prior knowledge on the 

spatial scale  of the interaction distance and the functional shape of the com-

petition kernel a sensitivity analysis of different spatial scales and functional 

shapes was made (Table 4.5). The parameters of interest and especially the 

predicted most likely ecological scenario  depended strongly on the mean in-

teraction distance of the competition kernel, whereas the functional shape 

of the competition kernel was less important (Table 4.5). Since the actual 

competition kernel among A. thaliana plants is unknown it is diffi cult to 

interpret the consequences of the results in Table 4.5, except that neglect-

ing the effect of spatial covariance in non-randomly designed competition 

experiments may affect the inferred conclusions (Damgaard 2004b).
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Max. likelihood: Predicted probabilities of 
ecological scenarios:

c12 c21 Co-
existence

Only
C24

Only
Nd-1

Either

Mean interaction distance = 1

exponential λ  = 2 1.240 0.491 0.438 0.562 0 0

Gaussian δ = 2/π 1.107 0.498 0.528 0.471 0.0002 0.0004

Bessel λ  = π/2 1.094 0.522 0.461 0.539 0 0

Mean interaction distance = 2

exponential λ  = 1 1.104 0.602 0.175 0.824 0 0

Gaussian δ = 8/π 1.102 0.656 0.148 0.852 0 0

Bessel λ  = π /4 1.199 0.667 0.213 0.787 0.0003 0

Mean interaction distance = 20

exponential λ  = 0.1 1.082 0.401 0.678 0.320 0.001 0.001

Gaussian δ =800/π 1.078 0.425 0.800 0.200 0.001 0

Bessel λ  =π /40 1.155 0.460 0.673 0.325 0.001 0.0003

Mean interaction distance = ∞

mean-fi eld 1.114 0.501 0.572 0.427 0.0007 0.0002

Table 4.5 Estimation of parameters of interest from a competition experiment 

between two A. thaliana genotypes (1: C24 and 2: Nd-1) under fi eld conditions 

with and without including spatial covariance (mean-fi eld) using equation (4.7). 

The competition kernel at various mean interaction distances was assumed to be 

either a two-dimensional exponential -, Gaussian -, or Bessel distribution with the 

dimension of the scale parameter in cm. The competition kernel is expected to dif-

fer among species, i.e., U11 ≠ U22 ≠ U12 ≠ U21, but since the two A. thaliana genotypes 

belong to the same species it is here assumed that U = U11 = U22 = U12 = U21.

 There is no prior knowledge on the equilibrium spatial distribution of the two A.

thaliana genotypes and therefore it is assumed that the genotypes at equilibrium 

are randomly dispersed, but it is possible to generalise this assumption. The estab-

lishing probabilities for both genotypes were set to 0.001 (Damgaard 2004b). Note 

that, based on the same set of experimental data, the predicted outcome of com-

petition between two Arabidopsis thaliana genotypes can vary between (almost 

certain) coexistence and (almost certain) exclusion of one genotype, depending on 

the assumptions made about the spatial scale of competition between the plants. 

The predicted outcome of competition depended strongly on the mean interaction 

distance of the competition kernel, whereas the functional shape of the competition 

kernel was less important.
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in manipulated competition experiments  should be placed randomly, so 
that the design of the competition experiment is in agreement with the 
model used in the analysis (e.g. Damgaard 2004b). 

Environmental gradients 
The abiotic and biotic environment in which most plant interactions take 
place is highly variable across space and time. It has long been recognised 
that temporal and spatial variation in the environment is a major force that 
may infl uence the outcome of interspecifi c plant competitive interactions 
and plant community structures (Tilman 1988, Grime 2001). However, 
this important notion has only recently begun to infl uence the theoretical 
population dynamic models of species interaction (Chesson 2003). 
 The nature of the spatial and temporal environmental variation also 
varies and different modelling approaches may be used depending on 
the studied environmental variation (e.g. Rees et al. 1996, Bolker 2003), 
but here we will focus on the modelling of a spatial environmental gra-
dient. An environmental gradient may be defi ned as a set of locations 
that vary with respect to one or more environmental factors and where 
the environment of each location is approximately constant or slowly 
changing on an ecological time scale. Different theoretical hypotheses 
on the expected effect of various environmental gradients have been 
developed and investigated in a number of empirical studies. For an 
introduction to the various hypotheses and the empirical work see e.g. 
Tilman (1988), Greiner La Peyre et al. (2001), and Grime (2001). 
 Often studied environmental gradients are specifi c abiotic stress fac-
tors like water availability, salinity, nitrogen availability, heavy metal 
concentration etc., but also the effects of general productivity (a sum-
mary indicator of plant growth) has been investigated. However, in 
some cases biotic factors may be assumed to be suffi ciently constant on 
an ecological time scale to be modelled as an environmental gradient, 
e.g., the effect of shading trees on herbaceous plants and the effect of 
general herbivores  and pathogens  (Damgaard 2003b).
 The growth and competitive interactions of two plant species along an 
environmental gradient may be adequately described by a generalisation 
of the discrete hyperbolic competition model (4.1), where it is assumed that 
the plants are effected by the level (h) of a specifi c environmental factor, 

(4.8),
v1(x1, x2, h) = ƒ

1
 + ƒ

1
 (x1 + ƒc12

x2)α β
φ -1/

1 1θ

v2(x1, x2, h) = ƒ
2
 + ƒ

2
 (ƒc21

x1 + x2)α β
φ -1/

2 2θ
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2003b). The functions ƒz that capture the effects of the environmental 
factor are of course generally unknown and depend on the environmen-
tal factor. There may exist prior knowledge, which will aid in choosing 
the right functional relationship. Alternatively, if competition experi-
ments are made at several different levels of the specifi c stress, then the 
functional relationship may be chosen by likelihood ratio tests or by the 
use of e.g. the Akaike information criterion of different candidate func-
tions. The exponentially decreasing function, sigmoid dose – response 
function, or the linear function  will in many cases be natural candidate 
response functions, and these response functions may be used inter-
changeably in the outlined methodology. For simplicity, it is here as-
sumed that within a certain limited range of the stress  level, the stress 
affects the competitive interactions and the reproductive fi tness of the 
susceptible plant species linearly, i.e.,

(4.9).

 Assuming a density-independent and constant probability of reach-
ing reproductive age the discrete recursive equations  of the densities  of 
two competing synchronous monocarpic  plant populations is:

 (4.10),

where vi(x1(g), x2(g),h) is a measure of the average fecundity  per plant. 
The recursive equations have the following equilibrium solutions :

(4.11a)

(4.11b)

(4.11c)

(4.11d)

where , and ƒcij(h) =cij,0+cij,1h

v1(x1, x2, h) = 1,0 + 1,1h+( 1,0 + 1,1h)(x1+(c12,0+c12,1h)x2)
φ -1/

1 1θα α β β

v2(x1, x2, h) = 2,0 + 2,1h+( 2,0 + 2,1h)((c21,0+c21,1h)x1 + x2)
φ -1/

2 2θα α β β

x1 (g + 1) = p1 x1(g) v1(x1(g), x2(g), h)

x2 (g + 1) = p2 x2(g) v2(x1(g), x2(g), h)

x2 = 0x1 = 0;^ ^

x2 = 0x1 = u1;
^ ^

x2 = vx1 = 0;^ ^

x1 = ;^
u – ƒc12

(h)v

1 – ƒc12
(h)ƒc21

(h)
x2 =
^

v – ƒc21
(h)u

1 – ƒc12
(h)ƒc21

(h)

p1   –( 1,0+ 1,1h)

( 1,0+ 1,1h)
u = , v =

1θ α α φ 1-1 φ 2-1

β β
p2    –( 2,0+ 2,1h)

( 2,0+ 2,1h)

2θ α α
β β
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equation (4.10) at the different equilibria (4.11 a-d) can be made. The 
eigenvalues are too complicated to be of general use, but they can be 
calculated numerically in specifi c cases, so that the stability  properties 
of the different equilibria may be known.
 If species 1 is more tolerant to the environmental factor than species 
2, then the condition when species 1 will outcompete species 2 can be 
found by rearranging the equations after setting the nontrivial equilib-
rium  (4.11d) equal to (4.11b) (Damgaard 2003b):

(4.12).

Plant – herbivore  and plant – pathogen  interactions
Above the effect of a relatively constant environmental factor on plant 
competition was discussed and it was argued that general herbivores or 
pathogens for modelling purposes might be considered to be relatively 
constant environmental factors. However, if the herbivore or pathogen 
(in the following called a parasite ) has one or more of the investigated 
competing plant species as the most important host plant , then the den-
sity of the parasite is controlled by the density of the host plants. That 
is, any changes in host plant size or density due to either competition, 
herbivory or disease will affect the density of the parasite. 
 The population growth of two competing plant species and a specifi c 
parasite may be modelled by recursive equations :

(4.13),

where ƒ(x1(g), x2(g), h(g)) describes the density of the parasite as a function 
of the densities of the two plant species and the parasite at the previous 
plant generation.  Depending on the parasite life history and especially 
the generation time, likely candidate functions of ƒ(x1(g), x2(g), h(g)) are 
various empirically fi tted standard discrete population growth models, 
a Nicholson-Bailey type of model , and others (Hudson and Greenman 
1998). Some parasite species tend to concentrate on a single food source 
and in some cases a population of parasites will switch between the two 

ƒc21
 (h) >

v
u

x1(g + 1) = p1 x1(g) v1(x1(g), x2(g), h(g))

x2(g + 1) = p2 x2(g) v2(x1(g), x2(g), h(g))

h(g + 1) = ƒ(x1(g), x2(g), h(g))
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densities. Such a system of an optimal foraging parasite stabilises the sys-
tem so that local extinction events will become less likely (Krivan 1996, 
Krivan and Sidker 1999). Most models describing the population growth 
of two competing plant species and a specifi c parasite will face math-
ematical problems; in many cases only numerical methods will be avail-
able to fi nd possible stable equilibria and this complicates the calculations 
needed to make ecological predictions using Bayesian statistics. 
 The complicated subject of how another trophic level  affect the in-
teraction of species is a classic ecological question and has been studied 
extensively both theoretically and empirically. It is out of the scope of this 
monograph to examine the subject in any detail. Here it will suffi ce to men-
tion that depending on how the parasite affect the competing plant species, 
the parasite may either enhance or disrupt the likelihood that the two plant 
species coexist at equilibrium (Yan 1996, Hudson and Greenman 1998). 

Plant strategies  and plant community  structure
Most plant communities are dynamic with continuous local disturbances 
followed by a relatively long succession process, where plant species 
have to be able to re-colonise  a local area (Rees et al. 2001). Early-succes-
sional  plant species typically have a series of correlated traits, including 
high fecundity, long-distance dispersal , rapid growth when resources are 
abundant and slow growth and low survivorship when resources are 
scarce. Late-successional species usually have the opposite traits, includ-
ing relatively low fecundity, short dispersal distances, slow growth, and 
an ability to grow, survive, and compete under resource-poor conditions 
(Grime 2001, Rees et al. 2001). It has been hypothesised that much of the 
plant species diversity among plant communities  is controlled by a trade-
off between the ability to colonise new habitats and the ability to compete 
for resources. In plant communities there tend to be considerably more 
small seeded plant species than large seeded plant species suggesting, in 
concert with some seed addition experiments, that many plant species are 
limited by their ability to colonise new habitats (Rees et al. 2001). 
 As discussed above, the invasion criteria  of different spatial plant 
strategies of plants with a simplifi ed life history may be investigated 
by describing the changes in mean densities and average covariances 
in a spatial explicit model (Bolker and Pacala 1999). If plant species are 
divided into long-distance (globally) dispersing species and short-dis-
tance (locally)  dispersing species, then only three different spatial strat-
egies  may invade under the assumption that the resident species has a 
slight competitive advantage (Table 4.6). 
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Example 4.5 Competition between two genotypes of 
Arabidopsis thaliana  IV

Assume again that the two genotypes of Arabidopsis thaliana (Nd-1

and C24) investigated in example 4.1 and 4.2 are the two only geno-

types in the A. thaliana population and that the density of A. thaliana

is not controlled by other plant species. Furthermore, assume that mor-

tality is high and density-independent and that both genotypes have 

the same probability of reaching reproductive age. 

 One of the pathogens  known to attack natural A. thaliana popula-

tions is the biotrophic oomycete Peronospora parasitica  (Holub et al. 

1994). The pathogen causes downy mildew, but the effects of the dis-

ease in natural plant communities are unknown. The pathogen P. para-

sitica grows on a wide range of crucifers (Dickinson and Greenhalgh 

1977) and may be considered a generalist and it is here assumed that 

the local population size of the pathogen is constant on an ecological 

time scale. Genotype Nd-1 is susceptible to P. parasitica isolate Cala2,

and genotype C24 is resistant to the isolate (Holub and Beynon 1997).

 The competition experiment described in Example 4.1 was repeated 

in the greenhouse both in the absence of the pathogen and where 

each seedling was infected with about hundred P. parasitica (Cala2) co-

nidia (Damgaard and Jensen 2002). The fecundity was estimated from 

Fig. 4.5 Stable equilibrium densities  (equilibrium 4.11d) of A. thaliana genotypes

as a function of the pathogen level (h, measured in number of P. parasitica conidia 

per seedling) calculated using the maximum likelihood estimates of the competi-

tion model (Table 2)  . The probabilities of reaching reproductive age were assumed 

to be 0.001.
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Fig. 4.6 Posterior distribution of the pathogen level (measured in number of P. 

parasitica conidia per seedling) when the susceptible A. thaliana genotype (Nd-

1) is outcompeted by the resistant genotype (C24) assuming an uninformative 

prior distribution. The probabilities of reaching reproductive age were assumed 

to be 0.001.

dry weight data by linear regressions and fi tted to competition model 

(4.9) with some a priori constraints on the parameter space since the 

disease had no effect on genotype C24 (Damgaard 2003b). This experi-

mental design  is the minimum design required for applying the model. 

It would be benefi cial to include more densities and proportions of the 

two species, and to include more levels of the pathogen (presence vs. 

absence data can hardly be described as a gradient). Nevertheless, the 

maximum likelihood estimates of parameters were used to predict the 

densities at equilibrium of the two A. thaliana genotypes as a function 

of the level of the pathogen (Fig. 4.5). 

 The statistical uncertainty of the estimated pathogen level when the 

susceptible genotype is just outcompeted at equilibrium was investigated 

using inequality (4.12) and Bayesian statistics (Fig. 4.6) and it is apparent 

that the degree of uncertainty of the pathogen level is high. A consider-

able part of the posterior distribution is outside the domain of the data 

(0-100 conidia per seedling) and the lack of certainty is probably due to 

the fact that there was only two pathogen treatments in the competition 

experiments. The results should therefore be interpreted with care.
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 The three spatial strategies in Table 4.6, which may invade a habitat 
even if they are competitively inferior to a resident species, should not 
be confused with the CSR classifi cation  of plant strategies due to Grime 
(2001). In the CSR classifi cation, it is assumed that the ecological success  
of different plant species in a habitat mainly is explained by the intensity 
of disturbance and the general productivity in a habitat (Table 4.7). 

Table 4.7 The CSR classifi cation of plant strategies (from Grime 2001). A plant species 

may have a variable amount of one of the three primary strategies which may de de-

picted in a De Finetti diagram (Grime’s triangle).

Productivity

Intensity of disturbance High Low

Low Competitors Stress-tolerators

High Ruderals No viable strategy

Table 4.6 The invasion criteria of the four possible scenarios  between an invading and 

a resident species with two possible scales of dispersing. Only three different strate-

gies may invade if it is assumed that the resident species has a competitive advantage 

(Bolker and Pacala 1999).

Resident species

Globally dispersing Locally dispersing

In
va

d
in

g
 s

p
ec

ie
s

Globally
dispersing

The probability that the 
invading species succeeds is 
adequately described by the 
mean-fi eld model approxima-
tion.

A plant with a colo-
nisation strategy
may invade if the 
resident species has 
a clumped distribu-
tion.

Locally
dispersing

Both an exploitation strategy,
where plants quickly exploits 
the limiting resource, and a 
tolerance or phalanx strategy,
where plants are benefi ted in 
the inter-specifi c competitive 
interactions by an increase in 
the local density of conspecifi c 
plants, may invade.

The invading spe-
cies may be present 
in local patches.
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ties  is often a central scientifi c question and predicting plant community 
structures by searching for possible community assembly rules since 
long has been a research goal in plant ecology. At least three research 
paths have been followed: 

1) Either to test whether the species composition deviates from a specifi ed 
null-model where species are assumed to be independent of each other 
(Conner and Simberloff 1979, Rees et al. 1996, Wilson et al. 1996).

2) To explain the species composition pattern by the ecology of differ-
ent species groups (Weiher et al. 1998). If two plants species compete 
for the same limiting resources in a similar way, they are said to 
belong to the same functional type , which is a plant ecological term 
analogous to the guild or niche concept in the animal literature. The 
classifi cation of plant species to functional types may be done by 
comparing either morphological and life history  traits (e.g. Tilman 
1997, Hooper 1998, Weiher et al. 1998), or the positions in the CSR 
classifi cation  or another strategy classifi cation system (e.g. Westoby 
1998). One hypothesis of a possible assembly rule of plant commu-
nities that has been tested is that the proportions between different 
functional types are constant (e.g. Wilson et al. 1996, Weiher et al. 
1998, Symstad 2000). 

3) Or analysing the stability properties of community matrices (Roxburgh 
and Wilson 2000b, a), which are matrices of the competition coeffi cients  
of n competing species:

 (4.14),

 and similar approaches (e.g. Law and Morton 1996).
 As discussed previously, good quantitative predictions of the future 
states of plant communities are highly in demand (e.g. Keddy 1990). 
However, it is discouraging that the ecological conclusions typically 
reached when the above methods are tried on actual cases are very gen-
eral and unspecifi c on answering questions such as what will happen 
and when will it happen. There is still a lot of work to do! 

C =

1 c12 c13
. c1n

c21 1 c23
. c2n

. . . . .

cn1 cn2 cn3
. 1


